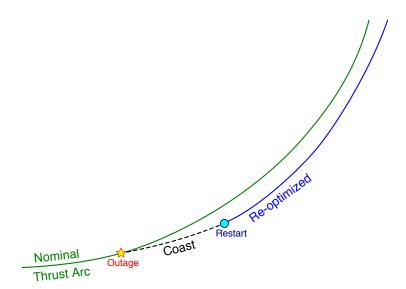
A Monte Carlo Approach to Measuring Trajectory Performance Subject to Missed Thrust


Frank E. Laipert and Travis Imken

Jet Propulsion Laboratory California Institute of Technology

January 9, 2018

Missed Thrust Problem

It happened to Dawn!

September 11, 2014

- Dawn entered safe mode on approach to Ceres.
- ► Thrust stopped at the most critical time.
- ▶ 4-day outage led to 26-day delay in arrival.

Planning for Missed Thrust

Estimate Margins Required

- ► How much extra propellant should be budgeted for missed thrust?
- ▶ How much extra time should we put in our schedule?
- Simulate missed thrust events on the reference trajectory.

Design Robust Trajectories

- ▶ Develop new optimization methods for low-thrust trajectories that account for missed thrust.
- Not focus of this work.

Comparison of Missed Thrust Methods

Deterministic Method

- Repeatedly simulate single thrust outage at regular intervals
- Quickly find sensitive points in trajectory.
- Difficult to extend to multiple outages
- Requires potentially arbitrary assumptions.

Probabilistic Method

- Run Monte Carlo simulation of many different outage scenarios.
- ► Inherently a multi-outage method.
- Computationally trickier—must make more decisions about outage recovery.
- Enabled by creation of safe mode database.

What are the odds of a safe mode?

We need a way of generating safe mode event scenarios that is consistent with reality.

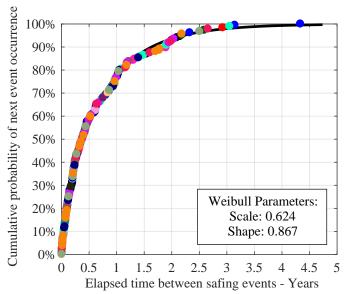
Safe Mode Database

- Collect as much information as possible from past planetary missions about safe mode events: when did they happen? And how long did they last?
- ► Almost 200 (and counting) individual safe mode events captured in database.
- ▶ Joint Effort between JPL, Goddard, Ames, and APL.

Weibull Fit

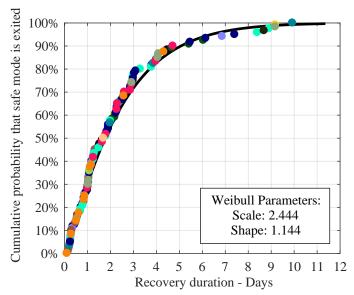
From Event Database, Fit Two Weibull Distributions

One for time between events, one for event duration.

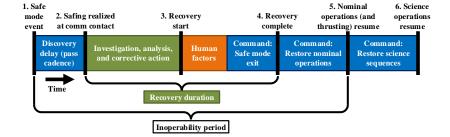

Weibull probability density function:

$$f(x; \lambda, k) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & x \ge 0, \\ 0 & x < 0. \end{cases}$$
 (1)

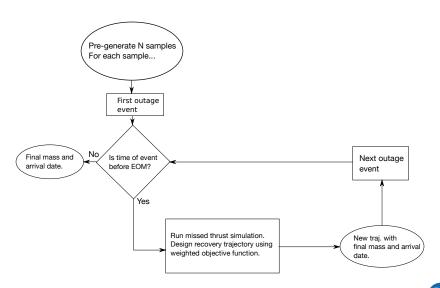
 $\lambda = \text{scale parameter}, \ k = \text{shape parameter}.$



Time Between Events



Event Duration


Event Duration

Example Sample

Event	Mission Day	Duration, d
1	36	4
2	90	3.2
3	310	2.8
4	560	7.2

Monte Carlo Missed Thrust Procedure

Performance Metrics

When Recovering from Missed Thrust

Design new trajectory that reaches target while minimizing

$$J = -m_f + \eta T$$

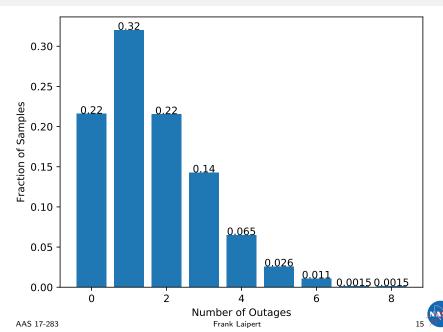
 $ightharpoonup \eta$ is a user-selected weighting.

Collect Statistics for Each Run

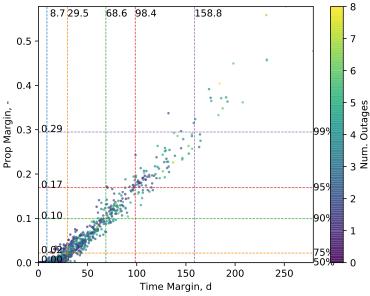
For each sample, track how late (\bar{l}) the spacecraft arrived and how much extra propellant (\bar{m}) it required to get there.

Re-run for different conditions

 \triangleright η , DSN schedule, safe mode assumptions.

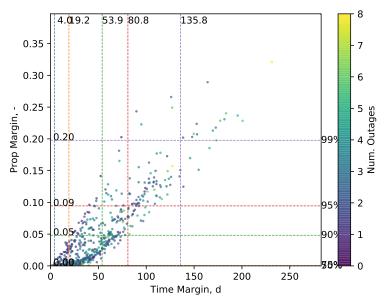

NASA

Example Trajectories

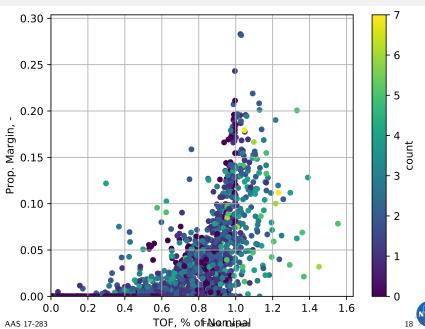

Table: Example Trajectory Characteristics

Prop. System	P ₀ , kW	<i>m</i> ₀ , kg	m _p , kg	TOF, days	C_3 , km ² /s ²
NEXT×2	24.5	3565	261	405	13.2
$HERMeS{\times}1$	30.5	4904	624	410	5.76

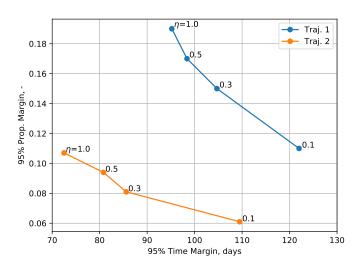
Distribution of Outages—NEXT



Scatter Plot—NEXT



Scatter Plot—HERMeS


Individual Outage Propellant—NEXT

Individual Lateness Contributions—NEXT

Weighting Plot

Bad samples: What Sequences Cost the Most?

Table: \bar{m}_{95} sample for Trajectory 2 with $\eta=0.5$

N	Evt. Time, %TOF	Duration, d	m̄	Ī
1	57.6	4.8	0.000	2.7
2	87.1	1.9	0.014	35.7
3	91.0	1.2	0.057	10.8
4	99.5	2.4	0.024	19.4
Total	-	10.3	0.095	68.6

Future Work

Visualization

► What additional insight can we gain from advanced visualization techniques?

Outage Recovery

- ► Given a thrust outage a particular time, what is the best way to spend margin?
- ► Simulate the decision making process at the time of a missed thrust.

Conclusions

We have developed a probabilistic missed thrust analysis method that:

- 1. Simulates realistic outage sequences.
- 2. Leverages the results of a new historical study of safe mode events.
- 3. Enables setting statistical requirements on SEP missions regarding missed thrust.